I'll mark brainliest! : ) What is the difference of the polynomials?

(–2x3y2 + 4x2y3 – 3xy4) – (6x4y – 5x2y3 – y5)

Group of answer choices

–6x4y – 2x3y2 + 9x2y3 – 3xy4 + y5

–6x4y – 2x3y2 – x2y3 – 3xy4 – y5

–6x4y + 3x3y2 + 4x2y3 – 3xy4 + y5

–6x4y – 7x3y2 + 4x2y3 – 3xy4 – y5

Answers

First we have to remove the brackets and change the signs in front of the monomials when there is a negative sign in front of the brackets: ( - 2 x³ y² + 4 x²y³ - 3 x y^4 ) - ( 6 x^4 y - 5 x² y³ - y^5 ) == - 2 x³ y² + 4 x² y³ - 3 x y^4 - 6 x^4 y + 5 x² y³ + y^5 = = - 6 x^4 y - 2 x³ y² + 9 x² y³ - 3 x y^4 + y^5. A )

We have to calculate the difference of the given polynomials, we follows as:

 (-2x^{3}y^{2}+4x^{2}y^{3}-3xy^{4})-(6x^{4}y-5x^{2}y^{3}-y^{5})

After opening the brackets, the signs of all the terms changes as there is negative sign before the bracket.

= (-2x^{3}y^{2}+4x^{2}y^{3}-3xy^{4})-6x^{4}y+5x^{2}y^{3}+y^{5})

Combining all the like terms, we get as

= (-2x^{3}y^{2})+(4x^{2}y^{3}+5x^{2}y^{3})-3xy^{4}-6x^{4}y+y^{5}

= -2x^{3}y^{2}+9x^{2}y^{3}-3xy^{4}-6x^{4}y+y^{5}

Option A is the correct answer.

The answer is A.

Step-by-step explanation:

For this case we have the following subtraction of polynomials:

(-2x ^ 3y ^ 2 + 4x ^ 2y ^ 3 - 3xy ^ 4) - (6x ^ 4y - 5x ^ 2y ^ 3 - y ^ 5)

Grouping similar terms, we have:

-2x ^ 3y ^ 2 + x ^ 2y ^ 3 (4 + 5) - 3xy ^ 4 - 6x ^ 4y + y ^ 5

Rewriting the polynomial we have:

-2x ^ 3y ^ 2 + 9x ^ 2y ^ 3 - 3xy ^ 4 - 6x ^ 4y + y ^ 5

Finally, rearranging terms we have:

- 6x ^ 4y - 2x ^ 3y ^ 2 + 9x ^ 2y ^ 3 - 3xy ^ 4 + y ^ 5

the difference of the polynomials is:

- 6x ^ 4y - 2x ^ 3y ^ 2 + 9x ^ 2y ^ 3 - 3xy ^ 4 + y ^ 5

Difference of the polynomials =>

( - 2 {x}^{3} {y}^{2} + 4 {x}^{2} {y}^{3} - 3x {y}^4) - (6 {x}^{4}y -

5 {x}^{2} {y}^{3} -  {y}^{5}) =

- 6 {x}^{4}y - 2 {x}^{3} {y}^{2} + 9 {x}^{2} {y}^{3} - 3 {x}^{4}y +  {y}^{5}

Hence the correct option is A. Hope it helps you.

A. -6x^4y -2x^3y^2 + 9x^2y^3 - 3xy^4 + y^5

Step-by-step explanation:

Given

(-2x^3y^2 + 4x^2y^3 - 3xy^4) - (6x^4y - 5x^2y^3 - y^5)

Required

Evaluate

(-2x^3y^2 + 4x^2y^3 - 3xy^4) - (6x^4y - 5x^2y^3 - y^5)

We start by opening both brackets

-2x^3y^2 + 4x^2y^3 - 3xy^4 -6x^4y + 5x^2y^3 + y^5

Collect like terms

-6x^4y -2x^3y^2 + 4x^2y^3 + 5x^2y^3 - 3xy^4 + y^5

-6x^4y -2x^3y^2 + 9x^2y^3 - 3xy^4 + y^5

The expression can't be simplified further; Hence, the result of the difference between both polynomial is -6x^4y -2x^3y^2 + 9x^2y^3 - 3xy^4 + y^5

A - -6x4y – 2x3y2 + 9x2y3 – 3xy4 + y5

I just took the test

-6x^4y-2x^3y^2+9x^2y^3-3xy^4+y^5

Step-by-step explanation:

We are given that an expression

(-2x^3y+4x^2y^3-3xy^4)-(6x^4y-5x^2y^3-y^5)

We have to find the difference of the given expression.

Open the bracket then, we get

-2x^3y^2+4x^2y^3-3xy^4-6x^4y+5x^2y^3+y^5

Combine like terms

Then, we get

-6x^4y-2x^3y^2+9x^2y^3-3xy^4+y^5

Hence, option first is true.

-6x^4y-2x^3y^2+9x^2y^3-3xy^4+y^5

−6x4y−2x3y2+9x2y3−3xy4+y5

Step-by-step explanation:

 First option is correct.

Step-by-step explanation:

Since we have given that

(-2x^3y^2+4x62y^3-3xy^4)-(6x^4y-5x^2y^3 -y^5)

1) Open a bracket with the sign changed to the second expression within the brackets:

(-2x^3y^2+4x^2y^3-3xy^4)-(6x^4y-5x^2y^3 -y^5)\\\\=-2x^3y^2+4x^2y^3-3xy^4-6x^4y+5x^2y^3 +y^5

2) Gather the like terms together:

(-2x^3y^2+4x^2y^3-3xy^4)-(6x^4y-5x^2y^3 -y^5)\\\\=-2x^3y^2+4x^2y^3-3xy^4-6x^4y+5x^2y^3 +y^5\\\\=-2x^3y^2+4x^2y^3+5x^2y^3-3xy^4-6x^4y+y^5\\\\=-2x^3y^2+9x^2y^3-3xy^4-6x^4y+y^5

Hence, First option is correct.



Do you know the answer?

Other questions on the subject: Mathematics

Mathematics, 21.06.2019, michael4443
the equation cos(35) =a/25 can be used to find the length of bc what is the length of bc? round to the nearest tenthstep-by-step explanation:...Read More
2 more answers